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Abstract

The gastrointestinal microbiota plays an important role in maintaining host health by preventing the colonization of

pathogens, fermenting dietary compounds, and maintaining normal mucosal immunity. Particularly in early life, the

composition of the microbiota profoundly influences the development and maturation of the gastrointestinal tract (GIT)

mucosa, which may affect health in later life. Therefore, strategies to manipulate the microbiota during infancy may

prevent the development of some diseases later in adult life. Earlier research suggested that term fetuses are sterile and

that the initial bacterial colonization of the newborn GIT occurs only after the baby transits through the birth canal.

However, recent studies have demonstrated that the colonization and/or contact of the fetus with the maternal GIT

microbiota may start in utero. After vaginal birth, the colonization of the neonate GIT continues through contact with

maternal feces and vaginal bacteria, leading to a relatively simple microbial community that is influenced by feeding type

(breast vs. formula feeding). Maternal GIT microbiota, vaginal microbiota, and breast milk composition are influenced by

maternal diet. Alterations of the maternal GIT microbiota composition via supplementation with probiotics and prebiotics

have been shown; however, transfer of these benefits to the offspring remains to be demonstrated. This review focuses

on the influence of maternal GIT microbiota during the pre- and postpartum periods on the colonization of the infant GIT. In

particular, it examines the manipulation of the maternal GIT microbiota composition through the use of probiotics and/or

prebiotics and subsequent consequences for the health of the offspring. J. Nutr. 142: 1921–1928, 2012.

Introduction

During pregnancy and lactation, the mother needs a diet that
provides adequate energy and nutrients to support her metab-
olism, growth and development of the fetus, and subsequent
milk production. Nutritional imbalances or malnutrition during
pregnancy are important factors responsible for miscarriage and
fetal developmental problems (1). Studies with iron and folic
acid supplementation of the mother�s diet, e.g., have shown
measurable benefits to the offspring such as decreased incidences
of neural tube defects and early neonatal death (2,3). More re-
cently, probiotic and prebiotic supplements that improve maternal

gastrointestinal tract (GIT)9 microbiota composition and func-
tion have been reported to beneficially affect the development
and maturation of the neonatal GIT (4,5). An improved mater-
nal microbiota is likely to provide the beneficial microbes for
either direct colonization of the neonatal GIT or for indirect
effect on the succession of indigenous intestinal bacteria.

The commensal microbiota of theGIT has important functions
for the human host, including development of the immune system
(6,7), protection against pathogens (8) and carcinogens (9),
nutrient processing (10), stimulation of angiogenesis (11), and
regulation of host fat storage (12). Early colonization of the infant
GIT is undoubtedly an important factor for infant health and may
have additional health benefits in later life. The initial develop-
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ment and maturation of the fetal/neonatal GIT is under partial
control of the maternal environment mediated by 4 main routes:
1) trans-placental transfer of maternal blood factors to the fetus; 2)
fetal ingestion of amniotic fluid in utero; 3) microbial colonization
of the neonatal GIT bymaternal microbiota in the perinatal period;
and 4) maternal milk factors (13). Consequently, the transition
between pre- and postnatal life is likely to be a critical window
for maternal dietary intervention, thus ensuring normal develop-
ment of the infant GITwith potential long-term effects on health in
adult life.

This review discusses the factors and mechanisms that con-
tribute to the development of the infant GIT and explores the
potential that maternal dietary supplementation may play in
enhancing the microbiota and mucosal interactions in her GIT,
thus offering health benefits to the infant.

Microbiota Colonization of the GIT

Prepartum. Historically, the human fetus has been considered
microbiologically sterile, with the first microbial exposure
taking place at vaginal birth through contact of the newborn
with the maternal vaginal and GIT microbiota and the surround-
ing environment (14). However, in the last decade, discoveries
point to pregnancy as the beginning of bacterial exposure for the
developing fetus (15–17). Bacteria from the maternal GIT and/or
urogenital region, such as Enterococcus species and Lactobacillus
species, have been isolated and/or detected in umbilical cord blood
(17), amniotic fluid (18), meconium (16), and placental (15) and
fetal membranes (15,19,20) without any clinical evidence of
infection or inflammation in the mother-infant pair. Such findings
suggest that term fetuses are not sterile and that a mother-to-fetus
efflux of commensal bacteria through the placental barrier may
occur. The microbial prevalence in the amniotic fluid and fetal
membranes has not been well characterized; however, an asso-
ciation between inflammation leading to preterm birth and altered
maternal GIT and genital microbiota have been suggested (21).
Therefore, the maternal microbiota, which translocates to the
amniotic fluid, is likely to stimulate an inflammatory response
or the development of GIT mucosal immune system of the
fetus (22).

The low levels of bacteria detected in umbilical cord blood,
amniotic fluid, placenta, and fetal membranes suggest that
rather than colonize the fetal GIT, their presence may be to
prepare the fetal immune system for life outside the uterus. In
support of this, microbial RNA and unmethylated DNA CpG
islands were shown to exert immune regulatory effects in adult
germfree mice (23,24). The absence of adverse neonatal immune
responses after microbial exposure in the birth canal supports
the existence of complex regulatory mechanisms that are likely
to commence during fetal development (25). Therefore, bacteria
or their components present in the fetal membranes during
pregnancy may contribute to immunological stimulatory and
protective or depletory effects for the neonate andmay be closely
associated with maternal GITand/or urogenital microbiota (26).

Partum and postpartum. During vaginal delivery, contact
with maternal vaginal and intestinal microbiota is an important
source of microbiota for colonization of the infant GIT. During
cesarean delivery, however, this direct contact is absent and
nonmaternally derived environmental and potentially patho-
genic bacteria are likely to colonize the infant GIT. The causal
relationship among cesarean delivery, the shift in microbiota,
and many childhood diseases was recently reviewed by Neu et al.
(27). After delivery, the microbiota changes rapidly, presumably

influenced by diet. Human milk provides nutrients and non-
nutritive components (e.g., Ig, lactoferrin, lysozyme, and oligo-
saccharides) to the offspring that facilitate the adaptive, functional
changes required for optimal transition from intrauterine to
extrauterine life (28,29). It also stimulates the immune system,
encourages cognitive development, protects from toxins and
pathogenic diseases, and colonizes and supports a protective
microbiota in the infant GIT (30).

Human milk is a rich and natural source of carbohydrate
oligosaccharide polymers that act as a prebiotic. Human milk
oligosaccharides (HMO) are capable of improving intestinal
microbiota diversity, which, in turn, increases the microbiota
metabolism rate, protects the neonate against pathogenic
bacteria, and most likely increases the absorption of minerals
(31,32). They have also been shown to improve glucose
homeostasis (33) and develop the neonatal immune system
(34). Of the various components in human milk, oligosac-
charides comprise a considerable fraction (5–23 g/L), being
the third-most abundant constituent in terms of concentra-
tion after lactose and lipids (35). Infants cannot digest HMO,
which remain intact until they reach the large intestine;
however, although having no apparent direct nutritional role,
HMO are involved in promoting the colonization and
subsequent signaling between commensal bacteria and their
host. These interactions play pivotal roles in the development
of the mucosal immune system and prevention of disease (36).
HMO are growth-promoting factors for the bifidobacteria-
dominated microbiota present in the large intestine of breast-
fed infants (37). In addition, HMO facilitate establishment of
the microbiota, which is required to activate the mucosal immune
system (38) and actively protect the infant from pathogenic
infection (39). Therefore, lactation could be considered the
second step of ‘‘immunological education.’’

An emerging feature of the structural analysis of HMO is
their diversity and specificity among women. Approximately
200 molecular structures differing in size, charge, and sequence
have been identified in human milk samples (40). Maternal
HMO vary qualitatively and quantitatively with regards to
lactation period, maternal Lewis Blood Group, and Secretor
status (41). However, diet, lifestyle, ethnicity, and other factors
may also contribute to structural variations of HMO. The
complexity of the carbohydrate repertoire in breast milk may
influence the level of protection transferred to the offspring. It is
likely that infants raised in particular environments, or during
specific growth stages or physiological states, take advantage of
selective variations in the amounts and structural differences of
oligosaccharides. For example, it has been shown that oligosac-
charides from individuals with Lewis blood group B exhibit
preferential binding to pathogens, especiallyHelicobacter pylori
(42), and children with Lewis blood group A have increased
susceptibility to enterotoxigenic Escherichia coli diarrhea (43).

Another minor component of breast milk is bacteria.
Culture-dependent methods have long confirmed the presence
of bacteria, including Staphylococcus, Streptococcus, and Bifi-
dobacterium species, in aseptically collected human milk
(44,45), whereas culture-independent studies utilizing charac-
terization techniques based on the amplification of bacterial 16S
rRNA have shown that human milk contains several additional
bacterial genera, including Lactobacillus and Enterococcus
species (45–47). Pyrosequencing of 16S rRNA genes in human
milk has suggested a core microbiome consisting of 9 bacterial
genera such as Staphylococcus, Streptococcus, Serratia, Pseu-
domonas, Corynebacterium, Ralstonia, Propionibacterium,
Sphingomonas, and Bradyrhizobiaceae (48). Other studies using
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cultivation and real-time qPCR have shown greater levels of
complexity and individuality in the milk microbiota compared
with the proposed core microbiome (13,45–47). A microbial
composition similar to breast milk was also found in infant feces
(49,50), supporting the concept of transfer of microbes from the
mother�s milk to the neonatal GIT. Exposure of breast-fed
infants to the bacteria in milk may educate the infant immune
system through the pattern recognition receptor CD14 and toll-
like receptor (51) that recognize bacterial cell wall components.
These receptors may induce analogous responses to maternal
antigens and protect the neonate against pathogens (52,53).

Mechanisms of maternal microbiota transfer during preg-
nancy and breast feeding. Some studies indicate that the
maternal GIT may be the origin of bacteria found in umbilical
cord blood and amniotic fluid (17,54,55) as well as in human
milk (56) (Fig. 1). For example, experiments with pregnant mice
orally administered a labeled Enterococcus faecium strain
showed a low level transfer of the labeled strain to the fetal
intestine and a higher level transfer to the mammary glands (17).
The mechanisms of maternal bacterial transfer to the fetus and
milk are unclear. It has been proposed that maternal dendritic
cells and leukocytes play an important role in the bacterial
uptake into placenta and milk (52). Dendritic cells in the Peyer�s
patch can cross the paracellular space of the intestinal epithe-
lium to take up bacteria directly from the intestinal lumen. Once
internalized by dendritic cells and/or macrophages, bacteria can
spread to other locations, such as those of the respiratory and
genitourinary tract, salivary and lachrymal glands, and, most

importantly, that of the lactating mammary gland, via lymphatic
and blood circulation (56–58). Dendritic cells are relatively
ineffective at killing internalized organisms (56,57) and may be
responsible for viable bacteria reaching the mammary glands
and placenta (52,56,59,60). Once in the blood circulation,
maternal-derived bacteria may be transferred to the fetus via the
paracellular pathway of the placental barrier (61). This is
analogous to the transfer of extracellular pathogens shown to
occur across the blood-brain barrier (62), including Streptococ-
cus pneumoniae and group B streptococci, bacteria closely
related to the predominant species found in human milk.
Beginning during prepartum and persisting throughout the
postpartum period, the maternal immune system shifts from cell-
mediated immunity (63) toward one characterized by humoral
immunity (64). This altered maternal immunological state may
increase the translocation of bacteria and their components from
the maternal GIT into the blood and lymphatic circulation (56).
Near term, thinning of the placental barrier increases nutrient,
waste product, and gas exchange efficiency between mother and
fetus (65) and possibly contributes to the influx of commensal
bacteria present in the blood circulation. This influx may initiate
the first adaptation of the fetal intestine for life outside the
mother.

Maternal GIT, Microbiota, and

Infant Health

Changes in maternal GIT microbiota composition have been
associated with alterations to biochemical parameters in the
maternal blood (e.g., increased folic acid and ferritin levels and
reduced transferrin and cholesterol levels), with possible conse-
quences for pregnancy progression, fetal programming, and,
consequently, for newborn health (66,67). The presence of
specifically Actinomyces naeslundii or Gram-negative anaerobes
in the maternal oral cavity, e.g., has been associated with earlier
delivery and lower birth weight, whereas the presence of
lactobacilli has been linked to term delivery and heavier birth
weight (54,67,68). Fak et al. (69) evaluated the effects of
maternal GIT microbiota changes on offspring health by orally
treating pregnant rats with live, nonpathogenic E. coli (strain
CCUG 29300T) isolated from human urine (cystitis) before
delivery or with broad-spectrum antibiotics before delivery and
during lactation (69). Compared with the offspring from
untreated mothers, offspring from dams of both treatments
had higher concentrations of Enterobacteriaceae, which corre-
lated with decreased stomach growth and function, lower total
pancreatic protein levels, higher small intestine permeability,
and increased plasma levels of the acute-phase protein hapto-
globin (69). These findings suggest that specific components of
the maternal GIT microbiota or maternal treatment with broad-
spectrum antibiotics may influence the diversity of the offspring
GIT microbiota and the development and maturation of the
offspring mucosal immune system (70, 71).

Studies have shown that many factors affecting the initiation
and course of autoimmune diseases appear to act within a
narrow window of development, either prenatally or postnatally
(72, 73). The maternal immune status seems to affect infant GIT
microbiota composition as well as the incidence of allergic
diseases. Allergic mothers, e.g., had lower amounts of bifido-
bacteria in their breast milk and feces and, consequently,
decreased counts and diversity of bifidobacteria in the offspring
feces (74, 75) compared with nonallergic mothers. The estab-
lishment of specific microbiota in infants, such as bifidobacteria

FIGURE 1 A hypothetical model to explain how maternal microbiota

and microbial products could be transferred from mother to the fetal and

neonatal GIT. Dendritic cells can cross the paracellular space of the

intestinal epithelium to take up bacteria directly from the intestine lumen.

Circulation of lymphocytes within the mucosal associated lymphoid tissue

allows the maternal GIT microbiota to reach distant mucosal surfaces,

including those found in the respiratory and genitourinary tracts, salivary

and lachrymal glands, and lactating mammary gland. GIT, gastrointestinal

tract; GUM, genitourinary tract mucosa; LMGM, mucosa of the lactating

mammary gland; MLN, mesenteric lymph node; RM, respiratory tract

mucosa; SLGM, mucosa of the salivary and lacrimal gland. The figure was

adapted with permission from Martin et al. (13).
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(76), has been shown to alter the signaling reactions that
determine T-cell differentiation and/or the induction of toler-
ance (77, 78).

Maternal exposure to environmental stimuli, particularly
bacteria and antigens prenatally, appears to play an important
role in postnatal immune responsiveness and the subsequent
development of autoimmune disorders (72, 73, 79). For exam-
ple, cord blood from neonates born to farming families was
shown to contain significantly higher levels of IFNg and TNFa
compared with cord blood from infants born to nonfarming
families (80). A decreased concentration of IFNg in cord blood
at birth was associated with late onset of allergies in adult life,
which might indicate that this cytokine plays an important role
in regulating the effects of maternal environmental stimuli to the
development of the fetal immune system (81). Maturation of the
adaptive immune system and development of functionally active
T-cells have been shown to start in utero, are influenced by en-
vironmental factors such as bacterial exposure, and are a critical
phase in fetal programming of the offspring (82).

Overall, the maternal GIT microbiota appears to influence
pregnancy progression and contributes to colonization of the
newborn GIT (83). A maternal GIT microbiota rich with bifido-
bacteria and with fewer E. coli may contribute to improve fetal
and/or neonatal development and maturation as well decrease
the incidence of immune disorders in infants. Dietary manipu-
lation of maternal GIT microbiota during the peri- and postnatal
period may thus be an important alternative method to improve
offspring health and later life outcomes.

Probiotics and Prebiotics in the Maternal

Diet and Infant Health

Probiotics. It is well known that administering probiotic
bacteria to adults alters the GIT diversity (84) and provides
health benefits (85, 86). Specific lactobacilli and bifidobac-
teria have traditionally been recognized as potential health-
promoting microbes in the human GIT and are, therefore,
broadly used as probiotic supplements in foods. The beneficial
effects of lactobacilli and bifidobacteria consumption are likely
to involve inhibition of pathogen adherence to the mucosa,
improvement of barrier function of the intestinal mucosa, produc-
tion of bacteriocins, increased mucosal IgA production, and
reduced mucosal proinflammatory cytokine secretion (87).
Probiotic dairy products containing Lactobacillus and bifido-
bacteria have been shown to reduce the risk of spontaneous
preterm delivery (88) and preeclampsia (89) as well as increase
serum levels of erythrocyte glutathione reductase (90), an
enzyme involved in cellular antioxidant activity, when consumed
by mothers during pregnancy. Probiotics also enhance disease
resistance in infants (91, 92). However, to be effective, probi-
otics must be continually taken, because they do not persist
in infants (93, 94) and adults (95) after administration is
discontinued.

Evidence that maternally derived probiotic bacteria colonize
the GIT of vaginally delivered and breast-fed infants and persist
for 1–2 y comes from studies analyzing the effects of perinatal
Lactobacillus rhamnosus GG (LGG) supplementation on the
development of allergic disorders in offspring (83, 96–98).
Blumer et al. (99), e.g., reported that pregnant mice supple-
mented with LGG had an altered placental proinflammatory
cytokine expression, with lower IL-4 and increased TNFa gene
expression levels. This was associated with reduced allergic
airway inflammation in the offspring (99). Similarly, in a human

intervention study, maternal LGG supplementation increased
cord blood and breast milk levels of antiinflammatory cytokines,
IFNg, and TGFb1, in the first week when compared with the
placebo group (100). A Finnish study also showed that maternal
pre- (1 mo) and postnatal (6 mo) supplementation with LGG
reduced the frequency of eczema in the offspring at 1, 2, 4, or 7 y
of age but had no effect on atopic sensitization (91, 101–104).
Administration of LGG to mothers during pregnancy decreased
plasma levels of IgE antibodies to a mixture of food allergens in
infants up to 2 y of age (105). The same treatment increased
colonization by particular Bifidobacterium species (96, 106) but
failed to modulate the microbial diversity of 1–wk-old infant
GIT (107). In a human-like atopic dermatitis model using NC⁄
NgaTnd mice, perinatal administration of LGG also decreased
clinical symptoms of dermatitis, scratching frequency, and
plasma IgE levels and increased levels of IFN-g in skin biopsies
(86).

Combined probiotic intervention with LGG and B. lactis
Bb12 and dietary counseling has been shown to ameliorate
glucose homeostasis in healthy young females during and after
pregnancy (33). Probiotic intervention also reduced the fre-
quency of gestational diabetes mellitus (13% diet/probiotics vs.
36% diet/placebo and 34% control) (108). The same maternal
treatment and dietary counseling reduced the proportion of
infants with a high 32–33 split proinsulin (a well-characterized
metabolic marker of insulin resistance) compared with control/
placebo groups (109). Kaplas et al. (110) showed that a
combination of a balanced diet and probiotic therapy with
LGG and B. lactis Bb12 was able to increase placental concen-
tration of phospholipid fatty acids, which are known to exert
immunomodulatory effects on the fetus later in pregnancy (111,
112). Increased concentrations of fatty acids available to the fetus
showed positive effects with regards to a reduction in food allergy
risk and IgE-associated eczema in infants during the first year of
life (113) and a lower rate of allergic asthma in 16-y-old children
(114). These findings suggest that the beneficial effects of these
probiotic strains may at least in part be mediated via the placenta
through induction of immunoinflammatory signals and may
promote neurological development at an early age (115) as
well as reduce the risk of a range of immunoinflammatory
disorders (110).

Promising results from previous studies have shown that
probiotic supplementation of the mother�s diet may have
protective effects against allergy development (91, 101–104).
There is, however, insufficient scientific evidence to support
many of the health claims attributed to probiotics. Because only
a limited number of strains, such as bifidobacteria and lactoba-
cillus, have been extensively studied for conferring health
benefits, other species, such as Streptococcus thermophilus
(116), should be investigated. Concerns exist about the overall
safety of administering probiotics to high-risk patient groups,
including pregnant women, preterm neonates, and infants (117).
Invasive infections caused by translocated probiotics into the
blood stream have been reported in patients with immune
dysfunction/suppression or with an abnormal gastrointestinal
mucosal barrier (118, 119). Also, there is a risk of transfer of
antibiotic resistance plasmids from some but not all probiotic
organisms (120).

Prebiotics. The addition of oligosaccharides resistant to diges-
tion in the small intestine (prebiotics) to the diet of pregnant
mothers is possibly a safer alternative than probiotic consump-
tion for influencing the maternal GIT microbiota population for
the benefit of the neonate (121). Oligosaccharides affect GIT
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function by selectively stimulating the growth and/or activity of
beneficial bacteria such as bifidobacteria and lactobacilli, thus
improving host health (122). Fujiwara et al. (5, 123) demon-
strated that maternal dietary supplementation with fructo-
oligosaccharide modulated the GIT microbiota of the offspring
and diminished the severity of atopic dermatitis. In contrast, the
combined dietary supplementation of galacto-oligosaccharide
(GOS) and fructo-oligosaccharide changed the maternal micro-
biota, but the effect was not transferred to the offspring (121).
Another study showed that a GOS and inulin-enriched diet fed
throughout pregnancy and lactation was able to increase colon
length and thigh muscle mass in the offspring (124).

Consumption of prebiotics by mothers may also increase the
production of bacterially derived metabolites, providing benefits
both for her and her offspring. Inclusion of inulin and GOS in
the mother�s diet increased the numbers of bacteria synthesizing
folate, the levels of folate in the digesta of the large intestine and,
consequently, the levels of folate in the blood stream available
for fetal development (125). Suboptimal concentrations of folate
during pregnancy have been associated with anemia, neural tube
defects, vascular disease, neuropsychiatric disorders, and can-
cers (126). Another group of metabolites produced by microbial
fermentation that may affect the fetus during pregnancy are
SCFA. Most SCFA produced by colonic bacteria, predominantly
acetate, propionate, and butyrate, are absorbed by colonic
epithelial cells and metabolized, contributing to the mother�s
energy supply and that of the developing fetus (127). For
example, butyrate is a histone deacetylase inhibitor that is
thought to activate genes by increasing histone acetylation and
decreasing DNA methylation (128). There is evidence that
SCFA-mediated histone deacetylase inhibition may play a part in
gene regulation of fetal globin (129) and hemoglobin (130).
This, in turn, may have a role in the normal regulation of human
g- to b-globin gene switching, a process that is important in the
formation of hemoglobin.

Synbiotics. Recently, the co-therapy of probiotics with prebi-
otics (synbiotics) in pregnant women and their infants was tested
to assess the prevention of allergic diseases (131,132). A total of
1223 pregnant women carrying infants with a high risk of
developing atopic dermatitis were randomly assigned to be given
a daily mixture of either 4 probiotic strains with GOS or a
placebo for 2–4 wk before delivery. After delivery, infants
received either the same probiotic mixture with GOS or the same
placebo as the mother for up to 6 mo of age. Synbiotic treatment
showed no effect on the incidence of respiratory allergic diseases
by 2 y of age but prevented atopic eczema, increased resistance
to respiratory infections, and reduced IgE-associated atopic
dermatitis (131,132). In the same study, the synbiotic treatment
was able to improve the response to Haemophilus influenzae
type b (Hib) immunization, increasing Hib antibody concentra-
tions comparedwith the placebo groupwithout impairing antibody
responses to diphtheria, tetanus, or Hib.

A mixture of pro- and prebiotics has a synergistic effect by
stimulating the growth and/or metabolism of the delivered
probiotic bacteria, inducing, e.g., the production of SCFA that
have direct antipathogenic and immune-modulating effects. Due
to the complexity of the GIT microbiota and its interaction with
the immune system, it is difficult to define the specific mechanism
underlying the functional effects of pro- and prebiotics. How-
ever, the reported relationship between allergic disease and the
composition of the intestinal microbiota early in life points to
the prenatal and perinatal periods as an opportunity to improve
offspring health through maternal supplementation.

In conclusion, during the last decade, important evidence has
shown that during pregnancy, maternal GIT microbiota or its
products may also be transferred to the fetus/neonate through
the placenta or by breast feeding. Moreover, further studies are
required to define the mechanisms by which the microbiota
present in the mother�s GIT and/or genital tract may influence
maternal physiology and also the development and maturation
of the offspring with health consequences in later life.

Most human intervention studies evaluating the effects of
perinatal administration of probiotics and prebiotics to pregnant
women and to infants after birth focus primarily on the prevention
of atopic dermatitis. Although these findings indicate some
positive effects, there are also conflicting results dependent on
the specific strains tested, the conditions of use, and the population
group. Administration of certain probiotics and/or prebiotics
during the perinatal and postnatal period may be a potential
prophylactic therapy for other modern-life diseases, such as
obesity and metabolic disease. However, there is an urgent
need for long-term human intervention studies to support this
hypothesis and to widen our knowledge of the interactions
between maternal environment and fetus health outcomes.
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101. Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri
E. Probiotics in primary prevention of atopic disease: a randomised
placebo-controlled trial. Lancet. 2001;357:1076–9.
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